圓周率是誰發明的 圓周率的發明歷史
我們都聽說過圓周率,可是大家對于圓周率了解嗎?知道是誰發明的嗎?知道當中的發明歷史嗎?下面跟隨學習啦小編一起來看看吧。
圓周率的發明者以及發明歷史
實驗時期
一塊 古巴比倫石匾(約產于 公元前1900年至1600年)清楚地記載了圓周率 = 25/8 = 3.125。 同一時期的 古埃及文物,萊因德數學紙草書(Rhind Mathematical Papyrus)也表明圓周率等于分數16/9的平方,約等于3.1605。埃及人似乎在更早的時候就知道圓周率了。 英國作家 John Taylor (1781–1864) 在其名著《金字塔》(《The Great Pyramid: Why was it built, and who built it?》)中指出,造于公元前2500年左右的 胡夫金字塔和圓周率有關。例如,金字塔的周長和高度之比等于圓周率的兩倍,正好等于圓的周長和半徑之比。公元前800至600年成文的古印度宗教巨著《百道梵書》(Satapatha Brahmana)顯示了圓周率等于分數339/108,約等于3.139。
幾何法時期
古希臘作為古代幾何王國對圓周率的貢獻尤為突出。古希臘大數學家 阿基米德(公元前287–212 年) 開創了人類歷史上通過理論計算圓周率近似值的先河。阿基米德從 單位圓出發,先用內接正六邊形求出圓周率的 下界為3,再用外接正六邊形并借助 勾股定理求出圓周率的 上界小于4。接著,他對內接正六邊形和外接正六邊形的邊數分別加倍,將它們分別變成內接正12邊形和外接正12邊形,再借助勾股定理改進圓周率的下界和上界。他逐步對內接正多邊形和外接正多邊形的邊數加倍,直到內接正96邊形和外接正96邊形為止。最后,他求出圓周率的下界和上界分別為223/71 和22/7, 并取它們的平均值3.141851 為圓周率的近似值。阿基米德用到了 迭代 算法和兩側數值逼近的概念,稱得上是“ 計算數學”的鼻祖。
中國古算書《 周髀算經》(約公元前2世紀)的中有“徑一而周三”的記載,意即取 。 漢朝時, 張衡得出 ,即 (約為3.162)。這個值不太準確,但它簡單易理解。
公元263年,中國數學家 劉徽用“ 割圓術”計算圓周率,他先從圓內接正六邊形,逐次分割一直算到圓內接正192邊形。他說“割之彌細,所失彌少,割之又割,以至于不可割,則與圓周合體而無所失矣。”,包含了求 極限的思想。劉徽給出π=3.141024的圓周率近似值,劉徽在得圓周率=3.14之后,將這個數值和晉武庫中漢 王莽時代制造的銅制體積 度量衡標準 嘉量斛的直徑和容積檢驗,發現3.14這個數值還是偏小。于是繼續割圓到1536邊形,求出3072邊形的面積,得到令自己滿意的圓周率 。
公元480年左右, 南北朝時期的數學家 祖沖之進一步得出精確到小數點后7位的結果,給出不足近似值3.1415926和過剩近似值3.1415927,還得到兩個近似分數值,密率 和約率 。密率是個很好的分數近似值,要取到 才能得出比 略準確的近似。 (參見 丟番圖逼近)
在之后的800年里祖沖之計算出的π值都是最準確的。其中的密率在西方直到1573年才由 德國人奧托(Valentinus Otho)得到,1625年發表于 荷蘭工程師安托尼斯(Metius)的著作中, 歐洲稱之為Metius' number。
約在公元530年, 印度數學大師 阿耶波多算出圓周率約為 。 婆羅摩笈多采用另一套方法,推論出圓周率等于10的 算術平方根。
阿拉伯數學家 卡西在15世紀初求得圓周率17位精確小數值,打破祖沖之保持近千年的紀錄。 德國數學家 魯道夫·范·科伊倫(Ludolph van Ceulen)于1596年將π值算到20位小數值,后投入畢生精力,于1610年算到小數后35位數,該數值被用他的名字稱為魯道夫數。
分析法時期
這一時期人們開始利用 無窮級數或無窮連乘積求π,擺脫可割圓術的繁復計算。無窮乘積式、無窮 連分數、無窮級數等各種π值表達式紛紛出現,使得π值計算精度迅速增加。
魯道夫·范·科伊倫(約1600年)計算出π的小數點后首35位。他對此感到自豪,因而命人把它刻在自己的墓碑上。
第一個快速算法由英國數學家梅欽(John Machin)提出,1706年梅欽計算π值突破100位小數大關,他利用了如下公式:
其中arctan x可由 泰勒級數算出。類似方法稱為“梅欽類公式”。
斯洛文尼亞數學家Jurij Vega于1789年得出π的小數點后首140位,其中只有137位是正確的。這個世界紀錄維持了五十年。他利用了梅欽于1706年提出的數式。
到1948年英國的弗格森(D. F. Ferguson)和美國的倫奇共同發表了π的808位小數值,成為人工計算圓周率值的最高紀錄。
計算機時代
電子 計算機的出現使π值計算有了突飛猛進的發展。1949年, 美國制造的世上首部電腦- ENIAC(Electronic
Numerical Integrator And Computer)在 阿伯丁試驗場啟用了。次年,里特韋斯納、馮紐曼和梅卓普利斯利用這部電腦,計算出π的2037個小數位。這部電腦只用了70小時就完成了這項工作,扣除插入 打孔卡所花的時間,等于平均兩分鐘算出一位數。五年后,IBM NORC(海軍兵器研究計算機)只用了13分鐘,就算出π的3089個小數位。科技不斷進步,電腦的運算速度也越來越快,在60年代至70年代,隨著美、英、法的電腦科學家不斷地進行電腦上的競爭,π的值也越來越精確。在1973年,Jean Guilloud和Martin Bouyer以電腦CDC 7600發現了π的第一百萬個小數位。
在1976年,新的突破出現了。薩拉明(Eugene Salamin)發表了一條新的公式,那是一條二次收斂算則,也就是說每經過一次計算, 有效數字就會倍增。高斯以前也發現了一條類似的公式,但十分復雜,在那沒有電腦的時代是不可行的。這算法被稱為布倫特-薩拉明(或薩拉明-布倫特)演算法,亦稱高斯-勒讓德演算法。
1989年 美國哥倫比亞大學研究人員用克雷-2型(Cray-2)和IBM-3090/VF型巨型電子計算機計算出π值小數點后4.8億位數,后又繼續算到小數點后10.1億位數。2010年1月7日——法國工程師 法布里斯·貝拉將圓周率算到小數點后27000億位。2010年8月30日——日本計算機奇才近藤茂利用家用計算機和 云計算相結合,計算出圓周率到小數點后5萬億位。
2011年10月16日,日本 長野縣 飯田市公司職員近藤茂利用家中電腦將圓周率計算到小數點后10萬億位,刷新了2010年8月由他自己創下的5萬億位 吉尼斯世界紀錄。56歲的近藤茂使用的是自己組裝的計算機,從10月起開始計算,花費約一年時間刷新了紀錄。
圓周率趣聞事件
歷史上最馬拉松式的人手π值計算,其一是 德國的 魯道夫·范·科伊倫(Ludolph van Ceulen),他幾乎耗盡了一生的時間,于1609年得到了圓周率的35位精度值,以至于圓周率在德國被稱為Ludolphine number;其二是英國的威廉·山克斯(William Shanks),他耗費了15年的光陰,在1874年算出了圓周率的小數點后707位,并將其刻在了墓碑上作為一生的榮譽??上?,后人發現,他從第528位開始就算錯了。
在 谷歌公司2005年的一次公開募股中,共集資四十多億美元,A股發行數量是14,159,265股,這當然是由π小數點后的位數得來。 (順便一提,谷歌公司2004年的首次公開募股,集資額為$2,718,281,828,與數學常數e有關 )
排版軟件 TeX從第三版之后的版本號為逐次增加一位小數,使之越來越接近π的值:3.1,3.14,……當前的最新版本號是3.1415926。
每年3月14日為 圓周率日,“終極圓周率日”則是1592年3月14日6時54分,(因為其英式記法為“3/14/15926.54”,恰好是圓周率的十位近似值。)和3141年5月9日2時6分5秒(從前往后,3.14159265)
7月22日為圓周率近似日(英國式日期記作22/7,看成圓周率的近似分數)
有數學家認為應把"真正的圓周率"定義為2π,并將其記為 τ(發音: tau)。
圓周率的特性
把圓周率的數值算得這么精確,實際意義并不大。現代科技領域使用的圓周率值,有十幾位已經足夠了。如果以39位精度的圓周率值,來計算 宇宙的大小,誤差還不到一個 原子的體積 。以前的人計算圓周率,是要探究圓周率是否 循環小數。自從1761年蘭伯特證明了圓周率是 無理數,1882年林德曼證明了圓周率是 超越數后,圓周率的神秘面紗就被揭開了。
π在許多數學領域都有非常重要的作用。
與發明有關的相關