12世紀誰發明了分數線
分數中間的一條橫線叫做分數線,分數線上面的數叫做分子,分數線下面的數叫做分母。那么知道是誰發明的分數線嗎?下面是學習啦小編給大家整理的關于誰發明了分數線的相關資料,歡迎大家閱讀!
說法一:瑞士數學家歐拉
歐拉1707年4月15日生于瑞士巴塞爾,1783年9月18日卒于俄國圣彼得堡。他生于牧師家庭。15歲在巴塞爾大學獲學士學位,翌年得碩士學位。1727年,歐拉應圣彼得堡科學院的邀請到俄國。1731年接替丹尼爾第一·伯努利成為物理教授。他以旺盛的精力投入研究,在俄國的14年中,他在分析學、數論和力學方面作了大量出色的工作。1741年受普魯士腓特烈大帝的邀請到柏林科學院工作,達25年之久。在柏林期間他的研究內容更加廣泛,涉及行星運動、剛體運動、熱力學、彈道學、人口學,這些工作和他的數學研究相互推動。歐拉這個時期在微分方程、曲面微分幾何以及其他數學領域的研究都是開創性的。1766年他又回到了圣彼得堡。 歐拉是18世紀數學界最杰出的人物之一,他不但在數學上作出偉大貢獻,而且把數學用到了幾乎整個物理領域。他又是一個多產作者。他寫了大量的力學、分析學、幾何學、變分法的課本,《無窮小分析引論》、 《微分學原理》 、《積分學原理》都成為數學中的經典著作。除了教科書外,他的全集有74卷。 18世紀中葉,歐拉和其他數學家在解決物理問題過程中,創立了微分方程這門學科。值得提出的是,偏微分方程的純數學研究的第一篇論文是歐拉寫的《方程的積分法研究》 。歐拉還研究了函數用三角級數表示的方法和解微分方程的級數法等等。 歐拉引入了空間曲線的參數方程,給出了空間曲線曲率半徑的解析表達式。1766年他出版了《關于曲面上曲線的研究》,建立了曲面理論。這篇著作是歐拉對微分幾何最重要的貢獻,是微分幾何發展史上的一個里程碑。歐拉在分析學上的貢獻不勝枚舉。如他引入了Γ函數和B函數,證明了橢圓積分的加法定理,最早引入了二重積分等等。數論作為數學中一個獨立分支的基礎是由歐拉的一系列成果所奠定的。他還解決了著名的組合問題:柯尼斯堡七橋問題。在數學的許多分支中都常常見到以他的名字命名的重要常數、公式和定理。 小時候他就特別喜歡數學,不滿10歲就開始自學《代數學》。這本書連他的幾位老師都沒讀過。可小歐拉卻讀得津津有味,遇到不懂的地方,就用筆作個記號,事后再向別人請教。1720年,13歲的歐拉靠自己的努力考入了巴塞爾大學,得到當時最有名的數學家約翰·伯努利(Johann Bernoulli,1667-1748年)的精心指導.。這在當時是個奇跡,曾轟動了數學界。小歐拉是這所大學,也是整個瑞士大學校園里年齡最小的學生。
數學貢獻
在數學領域內,18世紀可正確地稱為歐拉世紀。歐拉是18世紀數學界的中心人物。他是繼牛頓(Newton)之后最重要的數學家之一。在他的數學研究成果中,首推第一的是分析學。歐拉把由伯努利家族繼承下來的萊布尼茨學派的分析學內容進行整理,為19世紀數學的發展打下了基礎。他還把微積分法在形式上進一步發展到復數范圍,并對偏微分方程,橢圓函數論,變分法的創立和發展留下先驅的業績。在《歐拉全集》中,有17卷屬于分析學領域。他被同時代的人譽為“分析的化身”。
1.數論
歐拉的一系列成奠定作為數學中一個獨立分支的數論的基礎。歐拉的著作有很大一部分同數的可除性理論有關。歐拉在數論中最重要的發現是二次反律。
2.代數
歐拉《代數學入門》一書,是16世紀中期開始發展的代數學的一個系統總結。
3.無窮級數
歐拉的《微分學原理》(Introductio calculi differentialis,1755)是有限差演算的第一部論著,他第一個引進差分算子。歐拉在大量地應用冪級數時,還引進了新的極其重要的傅里葉三角級數類。1777年,為了把一個給定函數展成在(0,“180”)區間上的余弦級數,歐拉又推出了傅里葉系數公式。歐拉還把函數展開式引入無窮乘積以及求初等分式的和,這些成果在后來的解析函數一般理論中占有重要的地位。他對級數的和這一概念提出了新的更廣泛的定義。他還提出了兩種求和法。這些豐富的思想,對19世紀末,20世紀初發散級數理論中的兩個主題,即漸近級數理論和可和性的概念產生了深遠影響。
4.函數概念
18世紀中葉,分析學領域有許多新的發現,其中不少是歐拉自已的工作。它們系統地概括在歐拉的《無窮分析引論》、《微分學原理》和《積分學原理》組成的分析學三部曲中。這三部書是分析學發展的里程碑四式的著作。
5.初等函數
《無窮分析引論》第一卷共18章,主要研究初等函數論。其中,第八章研究圓函數,第一次闡述了三角函數的解析理論,并且給出了棣莫弗(de Moivre)公式的一個推導。歐拉在《無窮分析引論》中研究了指數函數和對數函數,他給出著名的表達式——歐拉恒等式(表達式中用表示趨向無窮大的數;1777年后,歐拉用表示虛數單位 ),但僅考慮了正自變量的對數函數。1751年,歐拉發表了完備的復數理論。
6.單復變函數
通過對初等函數的研究,達朗貝爾和歐拉在1747-1751年間先后得到了(用現代數語表達的)復數域關于代數運算和超越運算封閉的結論。他們兩人還在分析函數的一般理論方面取得了最初的進展。
7.微積分學
歐拉的《微分學原理》和《積分學原理》二書對當時的微積分方法作了最詳盡、最有系統的解說,他以其眾多的發現豐富可無窮小分析的這兩個分支。
8.微分方程
《積分原理》還展示了歐拉在常微分方程和偏方程理論方面的眾多發現。他和其他數學家在解決力學、物理問題的過程中創立了微分方程這門學科。
在常微分方程方面,歐拉在1743年發表的論文中,用代換給出了任意階常系數線性齊次方程的古典解法,最早引人了“通解”和“特解”的名詞。1753年,他又發表了常系數非齊次線性方程的解法,其方法是將方程的階數逐次降低。
歐拉在18世紀30年代就開始了對偏微分程的研究。他在這方面最重要的工作,是關于二階線性方程的。
9.變分法
1734年,他推廣了最速降線問題。然后,著手尋找關于這種問題的更一般方法。1744年,歐拉的《尋求具有某種極大或極小性質的曲線的方法》一書出版。這是變分學史上的里程碑,它標志著變分法作為一個新的數學分析的誕生。
10.幾何學
坐標幾何方面,歐拉的主要貢獻是第一次在相應的變換里應用歐拉角,徹底地研究了二次曲面的一般方程。
微分幾何方面,歐拉于1736年首先引進了平面曲線的內在坐標概念,即以曲線弧長這一幾何量作為曲線上點的坐標,從而開始了曲線的內在幾何研究。1760年,歐拉在《關于曲面上曲線的研究》中建立了曲面的理論。這本著作是歐拉對微分幾何最重要的貢獻,是微分幾何發展史上的里程碑。
歐拉對拓撲學的研究也是具有第一流的水平。1735年,歐拉用簡化(或理想化)的表示法解決了著名的歌尼斯堡七橋游戲問題,得到了具有拓撲意義的河-橋圖的判斷法則,即現今網絡論中的歐拉定理。
說法二:比薩列奧納多
列奧納多曾成為熱愛數學和科學的腓特烈二世 (神圣羅馬帝國)的坐上客。
歐洲數學在希臘文明衰落之后長期處于停滯狀態,直到12世紀才有復蘇的跡象。這種復蘇開始是受了翻譯、傳播希臘、阿拉伯著作的刺激。對希臘與東方古典數學成就的發掘、探討,最終導致了文藝復興時期(15~16世紀)歐洲數學的高漲。文藝復興的前哨意大利,由于其特殊地理位置與貿易聯系而成為東西方文化的熔爐。意大利學者早在12~13世紀就開始翻譯、介紹希臘與阿拉伯的數學文獻。歐洲,黑暗時代以后第一位有影響的數學家斐波那契(約1175~1240),其拉丁文代表著作《算經》、《幾何實踐》等也是根據阿拉伯文與希臘文材料編譯而成的,斐波那契,即比薩的列昂納多(Leonardo of Pisa),早年隨父在北非從師阿拉伯人習算,后又游歷地中海沿岸諸國,回意大利后即寫成《算經》(Liber Abac·1202,亦譯作《算盤書》)。《算經》最大的功績是系統介紹印度記數法,影響并改變了歐洲數學的面貌。現傳《算經》是1228年的修訂版,其中還引進了著名的“斐波那契數列”。《幾何實踐》(Practica Geometriae, 1220)則著重敘述希臘幾何與三角術。斐波那契其他數學著作還有《平方數書VLiberQuadratorum, 1225)、《花朵》(Flos, 1225)等,前者專論二次丟番圖方程,后者內容多為菲德里克(Frederick)二世宮廷數學競賽問題,其中包含一個三次方程/十2x2十10x~-20求解,斐波那契論證其根不能用尺規作出(即不可能是歐幾里得的無理量),他還未加說明地給出了該方程的近似解(J一1. 36880810785)。微積分的創立與解析幾何的發明一起,標志著文藝復興后歐洲近代數學的興起。微積分的思想根源部分(尤其是積分學)可以追溯到古代希臘、中國和印度人的著作。在牛頓和萊布尼茨最終制定微積分以前,又經過了近一個世紀的醞釀。在這個醞釀時期對微積分有直接貢獻的先驅者包括開普勒、卡瓦列里、費馬、笛卡)U、沃利斯和巴羅(1.Barrow,1630~1677)等一大批數學家。